Sliding Mode Control Design: a Sum of Squares Approach

نویسندگان

  • Sina Sanjari
  • Sadjaad Ozgoli
چکیده

—This paper presents an approach to systematically design sliding mode control and manifold to stabilize nonlinear uncertain systems. The objective is also accomplished to enlarge the inner bound of region of attraction for closed-loop dynamics. The method is proposed to design a control that guarantees both asymptotic and finite time stability given helped by (bilinear) sum of squares programming. The approach introduces an iterative algorithm to search over sliding mode manifold and Lyapunov function simultaneity. In the case of local stability it concludes also the subset of estimated region of attraction for reduced order sliding mode dynamics. The sliding mode manifold and the corresponding Lyapunov function are obtained if the iterative SOS optimization program has a solution. Results are demonstrated employing the method for several examples to show potential of the proposed technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of A No-chatter Fractional Sliding Mode Control Approach for Stabilization of Non-Integer Chaotic ‎Systems‎

A nonlinear chattering-free sliding mode control method is designed to stabilize fractional chaotic systems with model uncertainties and external disturbances. The main feature of this controller is rapid convergence to equilibrium point, minimize chattering and resistance against uncertainties. The frequency distributed model is used to prove the stability of the controlled system based on dir...

متن کامل

Design of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller

In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...

متن کامل

Systematic Approach to Design a Finite Time Convergent Differentiator in Second Order Sliding Mode Controller

This paper presents a systematic approach to design a Lyapunov based super twisting differentiator. The differentiator will be shown convergent in a finite time whilst the relevant time is accurately estimated.  This differentiator is the main part to establish the sliding surface in higher order sliding mode. The differentiator  is used in the prescribed control structure  to regulate pressure...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Fuzzy Sliding Mode Control System Design for Car- Following Behavior in Real Traffic Flow

In this paper a control system has been designed to improve traffic conditions in car following maneuver. There are different methods to design a control system. In this paper design approach is based on the Fuzzy sliding mode control (FSMC) system. The aim of designing FSMC system is to achieve safe and desire longitudinal distance and less lateral displacement. In orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1601.02190  شماره 

صفحات  -

تاریخ انتشار 2016